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Goals of Tutorial 2:
• Brisk introduction to asocial RL 

• Simulating data 


• Maximum likelihood estimation (MLE) of model parameters


• Predicting choices


• Social learning models  

• Imitating actions


• Combining asocial and social learning


• Social learning hierarchy (from imitation to Theory of Mind)


• Scaling up to more complex problems 

• Evolutionary simulations
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Sutton & Barto (1998)
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Reward prediction error

Qt+1(a) ← (1 − α)Qt(a) + αrt(a)
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Reward prediction error

Qt+1(a) ← (1 − α)Qt(a) + αrt(a)

Qt+1(a) ← Qt(a) + α [rt(a) − Qt(a)]
reward prediction error (RPE)



Q-values

Converting value to actions: 
Softmax policy (i.e. multinomial logistic function)

Policy π
We want policy to 

satisfy:Qt(w)

Qt(p)

πt(w)

πt(p)
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Q1 > Q2 ⇔ π1 > π2
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Q-values

Converting value to actions: 
Softmax policy (i.e. multinomial logistic function)

Policy

Stochastic action 
selection
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πt(w) =
exp[βQt(w)]

exp[βQt(w)] + exp[βQt(p)]

Qt(w) − Qt(p)
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Demo 1: Tweaking individual learning parameters

Which learning parameters ( ) typically produce the best results?α, β

Notebook
https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#simulating-data

https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#simulating-data
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D = {d1 = h, d2 = t, . . . dn = t}
Observed Data:

θ = P(h)

Model:

D ∼ Binomial(n, θ)
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Likelihood function
Beyond only simulating data, we also want to use models to describe experimental data. 
To fit a model to data, we first need to define a Likelihood Function:  
                                                  
describing the probability that the observed data  was generated based on model 
parameters 

P(D |θ)
D

θ

12

Coin Flip Model
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Model:
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Log Likelihoods
Since we are usually modeling multiple data points, we need to describe the joint likelihood over all 
observations: 

 

This is much easier using logarithms, since we can replace multiplication with summation in log space to 
compute the log likelihood 

 

Since probabilities are always <1, the log likelihood will always be negative. Thus, it’s more convenient to 
express the fit of a model using the negative log likelihood (nLL) by inverting the sign: 

 
The nLL expresses the amount of error or loss (aka ‘log loss’) and will always be greater than zero. 
Smaller values thus describe better model fits.

P(D |θ) = ∏
i

P(di |θ)

log P(D |θ) = ∑
t

log P(dt |θ)

nLL = − log P(D |θ)
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*Note that natural logs are used by default (sometimes written as ) rather than base 10 logarithms ln log10



Likelihoods as Goodness of Fit
Measure Formula Heads Tails

Likelihood P(D|θ) 80% 20%

Log likelihood log P(D|θ) –0.22 –1.61

Negative Log 
Likelihood (nLL) – log P(D|θ) 0.22 1.61

Deviance –2 log P(D|θ) 0.44 3.22

14
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From model simulation to likelihood functions
In practice, we can use code very simular to our model simulations to create 
a likelihood function

15

likelihood <- function(params, data){
   nLL <- 0 #initialize negative log likelihood
   for (d in data){ #loop through data
     predictions <- model(params) #make predictions
     observedAction <- d #define true outcome
     nLL <- nLL -log(predictions[observedAction]) #Update nLL
   }
   return(nLL)
}
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Use the likelihood function to find the parameters  where  is largest̂θ P(D |θ)
P(

D|
θ)

Maximum Likelihood Estimates (MLE)
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Maximum Likelihood Estimates (MLE)
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Use the likelihood function to find the parameters  where  is largest̂θ P(D |θ)
nL

L
8 Heads 
2 Tails

P(Heads) 
0   .1    .2    .3    .4    .5    .6    .7    .8    .9    1

MLE

Maximum Likelihood Estimates (MLE)

̂θ

…. or where nLL is lowest
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Computing the MLE

 θ1  θ2

nL
L Types of optimization 

algorithms


• Gradient descent


• Simplex methods


• Differential evolution

likelihood <- 
function(params
, data)

Optimization function

Minimize nLL



MLE for a RL model
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Q-learning agent



Parameter Space and Model Space
Model Space

M3

M1

M2
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Learning from social information
(5 minute break)
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Learning from social information
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Learning from social information

Le
ar

ni
ng

 fr
om

 e
xp

er
ie

nc
e

Social in
fluence

? ?

t = 1

t = 2



24

Imitating actions
Frequency-dependent copying

Probability of 
choosing option a

πFDC(a)

∝
f(a)θ

∑ f(k)θ

frequency of other agents 
performing the same action
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Demo 2: Imitation and Rogers’ paradox

How do different ratios of individual vs. social learners change the 
performance of each agent type?

Notebook https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#imitating-actions

https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#imitating-actions
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ESS

Rogers’ (1988)
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Combining imitation and 
value-learning
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Social frequency 
influence

γ1 - γ
Individual Q-learning

Choice probability at t = (1 - γ) Softmax + γ FDC

<

Q-values

>

f(i)θ

∑k f(k)θ

Decision-biasing social influence
individual social
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Demo 3: Decision-biasing

Which values of γ (social mixture) and θ (conformity exponent) 
typically produce the best results?

Notebook https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#combining-imitation-and-value-learning

https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#combining-imitation-and-value-learning
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Social influence at different levels of learning

Wu, Vélez, & Cushman (2022)
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Q-valuesSocial influence

Q(a) ← Q(a) + ηf(a)

value bonus
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Demo 4: Heterogeneous groups

Which strategy perform better than others? Is it robust to 
different group compositions?

Notebook https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#value-shaping

https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#value-shaping


Theory of Mind

33

• So far we have described very simple 
social learning mechanism 

• Yet an important aspect of human social 
learning is our ability to “unpack” observed 
actions into imputed mental states  
• desires and intentions 
• beliefs and one’s model of the world 

• This is known as Theory of Mind (ToM) 
inference

Jara-Ettinger  (2019)



Scaling up to more complex tasks

34

4x speed2x speed

Block
Reward

Player
Gaze

• Participants forage for hidden rewards (blue splash) on a field of melons


• Realistic field of view creates attentional trade-offs and opportunity costs for social learning:


• Looking at other players for social imitation comes at the cost of slower  individual foraging


• Rich and dynamic social interactions through spatial position and visual gaze

Wu et al,. (bioRxiv 2023) 
Wu et al., (Cogsci 2021)

Collective foraging in a dynamic and immersive virtual environment
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• Realistic field of view creates attentional trade-offs and opportunity costs for social learning:
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• Smash blocks by clicking and 
holding mouse (2.25 seconds)


• Some blocks contain rewards, 
indicated by a blue splash, 
 visible to other players


• Other blocks have no reward


• Participants incentivized to 
collect as many rewards as 
possible

Interactive Tutorial

2x speed
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holding mouse (2.25 seconds)
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possible
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2x speed



16 rounds with a 2x2 within-subject design


• Environment: smooth vs. random


• Condition: solo vs. groups of four

Experimental Design
Smooth

Random



Computational models

Sequentially predict each of the  blocks participants destroy: 
                            

using a softmax over a set of features  times weights  

Model features capture hypotheses about individual and social learning 
mechanisms (details on next slide)  

Model weights are estimated using hierarchical Bayesian methods in STAN with 
individual and group as random effects

k
P(Choicek+1) ∝ exp(fk ⋅ w)

f w

37

k − 1 k + 1k
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P(r = 1) = σ(z)

z
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Evolutionary dynamics
• Social learning has frequency-dependent fitness 

(Rogers, 1988) 
• The best strategy to use depends on what others in 

the population are doing 
• In order to determine the best normative strategy, it is 

often helpful to use evolutionary simulations: 
1. Initialize a population of agents 
2. Simulate performance on the task 
3. Select agents to seed the next generation (e.g., 

based on performance) 
4. Add mutation (change agent type, modify 

parameters) 
5. Repeat until convergence
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Evolutionary simulations
• Social learning despite individual differences 

(Witt et al., 2023) 
• People can use social information, but not 

verbatim 
• Exact imitation strategies might fail to 

account for social differences 
• Decision-Biasing (DB) 
• Value-Shaping (VS) 
• Social Generalization (SG): 

• integration social info in the reward 
generalization process  

• assume social info is noisier than individual 
experiences 40

Witt, Toyokawa, Gaissmaier, Lala, & Wu (Cogsci 2023)
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Summary and open challenges
• Social learning deploys a range of tools: 

• imitation: directly copy observed behaviors

• value-shaping: add a heuristic bonus to observed behaviors

• ToM Inference: inferring hidden value representations or hidden beliefs about the world


• However, this represents only a subset of social learning mechanisms:

• Intelligent behavior is not only a function of each individual but also how well groups collectively 

solve problems

• Over large time scales, simple innovations can cumulatively add up to produce massively 

complex cultural solutions

• So far we have focused on observational learning, but social learning also involves pedagogy 

and explicit communication

• Yet for each mechanism we can describe verbally, we can also define a computational model that 

makes more precise commitments to the mechanisms of behavior

• Through experimentation and modeling, we can iteratively tweak and refine our understanding of 

social learning.
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