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Kirk, Thorne, & Stumpf (Curr Opin Biotech 2013)


1. Generate hypotheses


2. Build models for each 
hypothesis


3. Fit models to data


4. Determine the best 
model


5. Interpretation
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Part 1. Model Comparison



What makes a good model?
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“As simple as possible, but not simpler”
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“As simple as possible, but not simpler”
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Jorge Luis Borges, On Exactitude in Science

... In that empire, the art of cartography attained such perfection 
that […] the cartographers guilds struck a map of the empire 

whose size was that of the empire, and which coincided point for 
point with it. The following generations, who were not so fond of the 

study of cartography as their forebears had been, saw that that vast map 
was useless, and not without some pitilessness was it, that they delivered 

it up to the inclemencies of sun and winters.



“As simple as possible, but not simpler”
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“As simple as possible, but not simpler”
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Fitting

Gigerener & Brighton (TopiCS, 2009)




“As simple as possible, but not simpler”
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Predicting

Fitting

Gigerener & Brighton (TopiCS, 2009)
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Simplicity Fit

Goodness of Fit
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Goodness of Fit Measures
Maximum Likelihood Bayesian Model Selection

Cross-validation loss

Akaike’s Information 
Criterion (AIC)

Bayesian Information 
Criterion (BIC)

Model evidence using  
Markov Chain Monte Carlo (MCMC) 

P(D |m, ̂θ) P(D |m1)
P(D |m2)

Penalizing 
for parameters 

Prediction error/
Bayesian 
Occam’s Razor
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Maximum likelihood estimation 
(MLE)

• Goal: Quantify the goodness fit for a 
single set of parameter values  that 
provides the best fit to the data: 
 
 


• Overfitting is avoided by penalizing 
for the number of parameters (e.g., 
AIC) or using cross-validation to test 
predictive power

̂θ

arg max
̂θ

P(D |m, ̂θ)
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• Goal: quantify how well a given model  captures 
the data using the marginal likelihood: 
 




• This integrates over all possible parameter values, 
allowing for a natural penalization of more 
complex models (i.e., Bayesian Occam’s Razor)


• You don’t only test the model at it’s best, but 
also at it’s worse


• Intractable in most settings, so approximated 
using BIC or through MCMC sampling

m

P(D |m) = ∫ P(D |m, θ)P(θ |m)dθ

Bayesian model selectionvs.
Theory
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Goodness of Fit Measures
Maximum Likelihood Bayesian Model Selection

Cross-validation loss
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Akaike’s Information Criterion (AIC)
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Akaike’s Information Criterion (AIC)

12

AIC = − 2 log P(D | ̂θ) + 2k
Complexity

1. Perform MLE and compute 2x the negative Log Likelihood (aka 
deviance)

2. Penalize by adding an additional loss that is 2x the number of 
parameters k

Fit



A measure of the relative information lost by a given model 
that is trying to capture some objective reality R(x)

Akaike’s Information Criterion (AIC)
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KL = ∫ R(x)log R(x)dx − ∫ R(x)log P(x |θ)dx

Theory



Akaike’s Information Criterion (AIC)
Asymptotically, AIC is equivalent to Leave-One-Out-Cross Validation 
(Stone, 1977) 


• for linear regression and mixed-effects regression 


• in the limit of infinite data


… yet for it’s simplicity, AIC is commonly used for non-linear models 
and certainly always short of infinite data


In practice, AIC can be considered the most lax of the goodness of fit 
measures we introduce, and is more prone to preferring an overfit 
model 
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Practice

…



Bayesian Information Criterion (BIC)
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Bayesian Information Criterion (BIC)

15

BIC = − 2 log P(D | ̂θ) + k log n

1. Perform MLE and compute 2x the negative Log Likelihood (aka 
deviance)

2. Penalize by adding an additional loss that is the number of 
parameters  times the log of the number of data points k n

ComplexityFit



Bayesian model selection sometimes relies on 
Bayes Factors (BFs) to quantify the evidence of 
one model  over another 


• BF = 1; no evidence for either model


• BF >> 1; evidence for model 1


• BF << 1; evidence for model 2


BIC approximates the marginal likelihood using 
the MLE and by making some assumptions 
about the prior (Schwartz, 1975)

m1 m2

Bayesian Information Criterion (BIC)
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Theory

BF1,2 =
P(D |m1)
P(D |m2)



Bayesian model selection sometimes relies on 
Bayes Factors (BFs) to quantify the evidence of 
one model  over another 


• BF = 1; no evidence for either model


• BF >> 1; evidence for model 1


• BF << 1; evidence for model 2


BIC approximates the marginal likelihood using 
the MLE and by making some assumptions 
about the prior (Schwartz, 1975)

m1 m2

Bayesian Information Criterion (BIC)

16

Theory

BF1,2 =
P(D |m1)
P(D |m2)

P(D |m) = ∫ P(D |θ, m)P(θ |m)dθ



Bayesian model selection sometimes relies on 
Bayes Factors (BFs) to quantify the evidence of 
one model  over another 


• BF = 1; no evidence for either model


• BF >> 1; evidence for model 1


• BF << 1; evidence for model 2


BIC approximates the marginal likelihood using 
the MLE and by making some assumptions 
about the prior (Schwartz, 1975)

m1 m2

Bayesian Information Criterion (BIC)

16

Theory

BF1,2 =
P(D |m1)
P(D |m2)

P(D |m) = ∫ P(D |θ, m)P(θ |m)dθ

P(D |m) ≈ BIC



Bayesian model selection sometimes relies on 
Bayes Factors (BFs) to quantify the evidence of 
one model  over another 


• BF = 1; no evidence for either model


• BF >> 1; evidence for model 1
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BIC approximates the marginal likelihood using 
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Theory

BF1,2 =
P(D |m1)
P(D |m2)

P(D |m) = ∫ P(D |θ, m)P(θ |m)dθ

P(D |m) ≈ BIC

BF1,2 = exp (−
1
2

(BIC1 − BIC2))



Bayesian interpretation is not without controversy (see Lewandowsky & Farrell, 
2010 for a discussion) and the assumptions are hardly ever met or even 
unpacked


But in practice, BIC is generally a more strict approach to penalizing for 
complexity compared to AIC and is less likely to prefer an overfit model:


 when there are at least 8 data pointslog(n) > 2

Bayesian Information Criterion (BIC)
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Practice
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AIC vs. BIC
Simulated data from a Q-

learning agent
Q-learning vs. Value shaping
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Goodness of Fit Measures
Maximum Likelihood Bayesian Model Selection

Cross-validation loss

Akaike’s Information 
Criterion (AIC)

Bayesian Information 
Criterion (BIC)

Model evidence using  
Markov Chain Monte Carlo (MCMC)

P(D |m, ̂θ)

Penalizing 
for parameters 

Prediction error/
Bayesian 
Occam’s Razor

P(D |m1)
P(D |m2)



Cross Validation
Rather than penalizing for complexity posthoc, 
we can actively test the predictive accuracy of a 
model through cross validation


1. Iteratively split the data into training and test 
sets


2. Estimate MLE on the training set, and then 
predict out-of-sample on the test set


3. Goodness of fit is the summed negative log 
likelihood of all out-of sample predictions: 
  +  +  + … + 
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Rounds

Sl
ic

es

….
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Cross validation

Inner loop: Iterate over data and 
compute MLE

Outer loop: Iterate over cross validation slices

Action

Reward

Agent Environment

Model

̂θ
Prediction

Rounds

Sl
ic

es

….

Fitting

−∑ log P( )

CV log loss



Variants of Cross validation
• Leave-one-round-out cross validation: Use the natural distinction 

between independent rounds or blocks in an experiment 

• k-Fold cross validation: when there is no natural structure in the data, we 
can break it into k equally sized slices 


• Leave-one-out-cross validation: most extreme case, where we iteratively 
leave a single data point out of the training set
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Data points

D
at

a 
po

in
ts

….

Data

Fo
ld

s

….

Rounds

Sl
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es
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Let’s get distributional!



Why Bayesian model estimation?
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Time pressure
Limited time
Unlimited time

Wu et al., (2022)

1. Not just a point estimate, but an entire 
probability distribution over parameters


2. Rather than only assuming participants are 
independent samples, we can model 
hierarchical relationships 

3. Naturally avoid overfitting through Bayesian 
Occam’s Razor, since we evaluate the model 
across the entire range of parameters



Posterior distribution over parameters
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• Previously, we only used MLE to provide a point estimate of the best parameters 


• Here, we want to estimate the full distribution of parameters suggested by the data 
and our choice of model: 
 
         


•  is the posterior distribution, which we compute using Bayes’ rule 
combining:


• The likelihood  of the data given a specific model and set of 
parameters


• A prior  over parameters, capturing our initial guess before we see the data

̂θ

P(θ |D, m) ∝ P(D |θ, m)P(θ, m)

P(θ |D, m)

P(D |θ, m)

P(θ, m)



Markov Chain Monte Carlo
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Markov Chain Monte Carlo
• Problem: We want to model a probability distribution that is difficult to 

compute analytically
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• Markov Chain

• sequential process, where each random sample is used as a stepping 

stone to generate the next sample

• Special property: Markov Chain has as it’s equilibrium distribution the target 

distribution we are trying to approximate



Markov Chain Monte Carlo
• Problem: We want to model a probability distribution that is difficult to 

compute analytically
• Solution: acquire random samples that approximate this distribution 
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• Markov Chain

• sequential process, where each random sample is used as a stepping 

stone to generate the next sample

• Special property: Markov Chain has as it’s equilibrium distribution the target 

distribution we are trying to approximate
• Monte Carlo

• Law of large numbers —> enough randomly drawn samples will 

approximate the underlying distribution



Lee, Sung, & Choi (2015)

Metropolis-Hastings MCMC
Psuedocode 
1. Sample  from 

2. Compute likelihood of  data 

given these parameters 



3. Accept the sample with 
probability proportional to 
how much of an improvement 

 is over 


The final collection of samples 
approximates the posterior 
parameter estimate 

θi P(θi |θi−1)

P(D |θi)

P(D |θi) P(D |θi−1)

P(θ |D)

P(θ |D)
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MCMC Samplers
STAN
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Posterior over parameters

True parameters
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Bayesian model comparison

Tutorial 4
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Part 1 Summary
Maximum Likelihood Bayesian Model Selection

Cross-validation loss

Akaike’s Information 
Criterion (AIC)

Bayesian Information 
Criterion (BIC)

Model evidence using  
Markov Chain Monte Carlo (MCMC)

P(D |m, ̂θ) P(D |m1)
P(D |m2)

Penalizing 
for parameters 

Prediction error/
Bayesian 
Occam’s Razor



Model fitting exercise
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Notebook

meteor.csv comet.csv Self-contained model-fitting code

https://cosmos-konstanz.github.io/notebooks/tutorial-3-model-comparisons.html#model-fitting-exercise

Which model best explains each dataset?

https://cosmos-konstanz.github.io/downloads/meteor.csv
https://cosmos-konstanz.github.io/downloads/comet.csv
https://cosmos-konstanz.github.io/notebooks/tutorial-2-models-of-learning.html#simulating-data
https://cosmos-konstanz.github.io/notebooks/tutorial-3-model-comparisons.html#model-fitting-exercise


Part 2. Robustness
(5 minute break)



Robustness checks
1. Model recovery 

• Can the data actually differentiate between the models we are considering? Could 
there be model mimicry, where the wrong model can mistakenly win?


2.  Parameter recovery 

• Are the parameters of the model capturing distinct phenomenon? Can changes in 
one parameter be acommodated by changes in another parameter (i.e., 
misspecification)?


3.  Simulated data 

• Can the model generate realistic participant behavior? Is it capturing the mechanisms 
that matter for performance, rather than simply fitting the noise?
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Model recovery

1. Use models to simulate data, parameterized with  either an a priori guess or 
from participant estimates 


2. Use the same model estimation procedure on the simulated data to estimate  for 
each model under consideration 


3. How often does the correct model provide the best fit?

θsim

θfit

θsim

a priori 
guess

Generated 
data  
Dθsim

Model

Participant 
estimates

m1
m2
m3

θfit

Simulation Estimation
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Model recovery
Wilson & Collins (eLife 2019)

Confusion matrix Inversion matrixp(fit|sim)
 p(sim|fit)


Which alternative models mimic a given 
simulation model?


If a given model wins a model competition, 
how likely is it to actually be the true 

generative model?



Parameter Recovery
Goal: Determine if parameters are distinct 
and behaviorally specific


1. Use either participant parameter estimates 
or some prior guess to simulate data (x-axis)


2. Run model fitting to estimate new 
parameters on simulated data (y-axis)


3. Do the fit parameters correspond to the 
simulated parameters? 


[Bonus] Counterfactual parameter recovery: 
Systematically vary simulating parameters 
across a range of plausible values. Does the 
entire hypothesis space recover?

38

Generalization Exploration bonus Temperature

Simulated parameter

Fi
t p

ar
am

et
er

Wilson & Collins (eLife 2019)

Giron*, Ciranka* et al., (2023)
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Simulated Performance
Palminteri, Wyart, & Koechlin (TICS 2017)

Wu et al., (PLOS CompBio 2020)

• Goodness of fits don’t always tell the full story


• Sometimes you need to check that models can 
reproduce important patterns of human behavior


• Can also be used to probe hidden 
components of the model, such as value 
representations


• Compare simulated model performance to 
human performance 
 
 
 



Simulated Performance
• Goodness of fits don’t always tell the full story


• Sometimes you need to check that models can 
reproduce important patterns of human behavior


• Can also be used to probe hidden 
components of the model, such as value 
representations


• Compare simulated model performance to 
human performance


• Can the model replicate differences across 
experimental manipulations or from different 
populations

Palminteri, Wyart, & Koechlin (TICS 2017)

Giron*, Ciranka*, et al., (2022)



General

Recipe 


for Cognitive 
Modeling
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Not fixed, step by step instructions… … but an adaptive set of principles
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Not fixed, step by step instructions… … but an adaptive set of principles
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1. What are your hypotheses? Turn them into models


2. How will you estimate the model parameters and perform model 
comparison?


3. Is your modeling framework robust? If not, rethink your task, the 
models, and/or your modeling framework.


4. [Collect data]


5. Analyze and interpret results


6. Test if recoverability still works with participant parameters

General Recipe
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What can you justify?

Reviewers You



Social Learning Specific Challenges
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• Social learning strategies have frequency-dependent fitness. 


• Performance of both real and simulated agents, don’t only depend on their model parameters, but also 
on the make-up of the group it is interacting with


• Objective performance can only be demonstrated with evolutionary simulations


• We only covered conformity biased social learning strategies that treat all other individuals as the same


• Much of social learning is selective in learning from successful or prestigious individuals


• More we need models to account for selectivity biases, but without ballooning in complexity


• We only very briefly touched on Theory of Mind, where individuals infer the hidden mental states of others 


• Modeling ToM is very difficult, even using sample-based approximations


• Even more so, due to infinite recursion of an agent reasoning about what other individuals think about 
themselves, ad infinitum 

• Capturing sophistication of social learning may come with the trade-off of needing to simplify individual 
learning mechanisms
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Recommended Readings
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Supplemental Slides



49Navarro, Griffiths, Steyvers, & Lee (MathPsych, 2006)

Aggregate vs. Individual
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Aggregate vs. Individual

Reaction Time Reaction Time
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Discrete vs. Continuous data
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Discrete vs. Continuous data

50

Choices are discrete outcomes Judgments and reaction times are continuous 
measures

Which flavour of ice-cream?
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Model predictions
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Error

• Maximizing likelihood is equivalent to:


• minimizing Mean Squared Error (MSE)


• minimizing KL-Divergence 


• MSE and KL-Divergence can also be transformed into likelihoods

Data
Prediction


